Kinetics

So many equations...so many units...

Summary of Kinetics Equations			
Order	Zero	First	Second
Rate Law			
Differential Rate Law - Comparing rate to concentration	Rate $=$ k	Rate = $k[A]$	Rate = $k[A]^2$
Integrated Rate Law			1 1
y = mx + b Comparing concentration over time	$[A] = -kt + [A]_0$	$\ln\left[A\right] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{1}$ versus t
"Graph C, N, R"			$\lfloor A \rfloor$
Relationship of rate constant (k) to the slope of the straight line	Slope = $-k$	Slope = $-k$	Slope = k
Units on rate constant (k)	$\frac{M}{s} = Ms^{-1}$ $= \frac{mol}{L \cdot s}$	$\frac{1}{s} = s^{-1}$	$\frac{1}{M \cdot s} = M^{-1}s^{-1}$ $= \frac{L}{mol \cdot s}$
Half Life Equation Use integrated law when solving other half life related problems	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k \ [A]_0}$

Arrhenius Equation

$$k = Ae^{-Ea/RT}$$

When Graphing...

Graph it as $\ln(k)$ versus $\frac{1}{T}$ (y versus x)

$$ln(k) = \left(-\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + ln(A)$$

 $y \quad = \quad m \qquad x \ + \quad b$

k = rate constant Ea = Activation Energy T = Temperature A = Frequency Factor R = 8.31 J/mol•K

$$ln\left(\frac{k_2}{k_1}\right) = \left(\frac{E_a}{R}\right)\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Finding Units for k

Remember: $rate = k[A]^{x}[B]^{y} etc \dots$

> Rearrange: $k = \frac{rate}{[A]^{x}[B]^{y} etc...}$

Remember:

 $rate units = \frac{M}{s}$ Concentration unts = M Overall Order = (x + y + etc ...)

Substitute in your units and rewrite: $k = \frac{M/s}{M^{(x+y+etc...)}} \rightarrow k = \frac{M}{M^{(x+y+etc...)*s}} \rightarrow \text{then cancel out units}$

Units for k based on overall order of reaction		
$k = \frac{M}{M^{(x+y+etc)\cdot s}}$		
Overall Order	Example of Units Plugged In	Final Units for k
0	$k = \frac{M}{M^{(0)} \cdot s} \qquad = \frac{M}{1 \cdot s}$	$\frac{M}{s} = Ms^{-1}$
1	$k = \frac{M}{M^{(1)} \cdot s} \qquad = \frac{M}{M \cdot s}$	$\frac{1}{s} = s^{-1}$
2	$k = \frac{M}{M^{(2)} \cdot s} = \frac{M}{M \cdot M \cdot s}$	$\frac{1}{M \cdot s} = M^{-1}s^{-1}$
3	$k = \frac{M}{M^{(3)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot M \cdot s}$	$\frac{1}{M^2 \cdot s} = M^{-2}s^{-1}$
4	$k = \frac{M}{M^{(4)} \cdot s} = \frac{M}{M \cdot M \cdot M \cdot M \cdot s}$	$\frac{1}{M^3 \cdot s} = M^{-3}s^{-1}$
Etcetc		

Remember: $M = \frac{mol}{L}$ $\frac{1}{M} = M^{-1} = \frac{L}{mol}$

You may see this substituted into k units.

For example:
$$M^{-1}s^{-1} = \frac{L}{mol \cdot s}$$

Using Logarithms

There is no way I can show you every version and rearrangement that you may come across during the year. Here are some common ones, some to help jog your memory. Remember that I am a Chemistry teacher, not a Math teacher...maybe Math-Land has better ways to show these! If you have something awesome from a math teacher then share it with me – ha!

	General	
	Logarithm Form	Exponent Form
Equations	$\log_a N = x$	$N = a^x$
Example	$\log_4 8 = 1.5$	$8 = 4^{1.5}$

	Base Ten	
	Logarithm Form	Exponent Form
Equations	$\log N = x$	$N = 10^{x}$
Example	$\log 100 = 2$	$100 = 10^2$

	Natural Logarithms		
	Logarithm Form	Exponent Form	
Equations	$\ln N = x$	$N = e^{\chi}$	
Example	$\ln 6 = 1.79$ rounded	$6 = e^{1.79}$ rounded	

	Subtracting and Dividing Natural Logarithms	
	Subtraction Form	Division Form
Equations	$\ln(A) - \ln(B)$	$\ln\left(\frac{A}{B}\right)$
Example	ln(15) – ln (3)	$\ln\left(\frac{15}{3}\right)$

	Normal Radioactive Half Life Logarithms		
	Subtraction Form	Division Form	
Equations	$\frac{A_E}{A_s} = 0.5^{\left(\frac{t}{h}\right)}$	$\log\left(\frac{A_E}{A_s}\right) = \frac{t}{h}\log\left(0.5\right)$	
Example	$\frac{3}{140} = 0.5^{\left(\frac{t}{24}\right)}$	$\log\left(\frac{3}{140}\right) = \frac{t}{24}\log\left(0.5\right)$	

Just *ONE* Chemistry Example of Using Natural Logarithms

Maybe you want to find out what fraction of a chemical you have after a certain time has passed. Let's say that you know it is a first order reaction. Remember that Integrated Rate Laws show you Concentration vs. Time. So start there! Remember that the fraction you have left is $\frac{[A]}{[A]_0}$

$$\ln[A] = -kt + \ln [A]_{0}$$

$$\downarrow$$

$$\ln[A] - \ln[A]_{0} = -kt$$

$$\downarrow$$

$$\frac{\ln [A]}{\ln[A]_{0}} = -kt$$

$$\downarrow$$

$$\ln \left(\frac{[A]}{[A]_{0}}\right) = -kt$$

$$\downarrow$$

$$\left(\frac{[A]}{[A]_{0}}\right) = e^{-kt}$$

$$\downarrow$$

Now plug in your value of k (rate constant) and t (time that has passed) and you can find your fraction left! Multiply it by 100 and you would have % left!

Here is an Excel spreadsheet I made that is programed to automatically graph the various plots for you 😳

https://tinyurl.com/yr7xzb75

